The Citizen Scientist: A Model For Professional Survival
P. W. "Bo" Hammer
This has been quite a century for physics and the physics profession. The development of modern physics in the early part of this century ushered in the Manhattan Project and other major World War II R&D initiatives such as the development of radar. Physicists showed the public that science could make significant contributions to national needs, particularly military security. In the post-war era, especially as the Cold War heated up, the public rewarded physicists and the broader science community with generous funds for research. For half a century the physics profession bloomed, and its fruits provided security and brought forth a new economic age dominated by silicon-based industries. The technical spillover into other fields such as biotechnology and medicine has been equally profound economically.
The Cold War ended abruptly, leaving significant collateral damage to national economies. US victory was bought on credit, leaving the public to reckon with large federal budget deficits and stifling payments on the national debt. These new economic constraints have had two effects. First, the public, through its elected representatives, seems no longer willing to make the generous broad-based investment in science and technology that physicists could at one time take for granted. Second was the revolution of sorts of the new Republican Congress, characterized by an anti-government attitude and a lack of experience in governing. These members of Congress were elected on their promise to upend the federal government by slashing spending, eliminating programs (if not whole agencies) and shifting governing responsibilities back to the states. The pervasive attitude in Congress is now one of distrust of the federal government and its role in our society. Additionally, because half the members of Congress are in their first or second term, they lack basic familiarity and know-how about governing and the intricacies of how the federal government functions. Congressional inexperience is particularly threatening in areas of science policy, where federal spending is critical for programs to survive and where the science programs being funded are not readily understood by the typical member of Congress. Criticizing this lack of understanding does not mean that members of Congress should all be scientists, yet the role of science in national policy does involve technical subtleties and judgement, as well as understanding of how science functions institutionally. A glaring example of this lack of understanding has been the false dichotomy in the recent debate over science vs. technology, or basic vs. applied research. Most worrisome, however, in this era of budget cutting is that federal spending priorities must be set to tighter tolerances. The lack of sophistication among members of Congress about the workings of the federal science infrastructure creates the specter of priorities being set willy-nilly, without much basis in rationality.
This current state of affairs threatens the physics profession and leads me to conclude that the cloistered physicist is a dinosaur. A new generation of citizen scientists is needed to confront the new realities of the post-Cold War era. In the old days, the cloistered scientist was the model and politics was considered dirty and manifestly unscientific. Only the most eminent scientists were active in Washington and they were trusted by their colleagues back in the lab to do the right thing. Life is different now and it is imperative for physicists, individually and collectively, to assume a new, expanded civic role. Citizen scientists are needed to educate members of Congress about the role of science in society and to help set rational priorities for federal spending under flat or declining budgets.
Educating members of Congress is best achieved on a personal basis, whereby you as a physicist establish a relationship with your local representative. There are a number of ways to do this. One is to invite your congressperson to visit your university to see the lab and talk to students and faculty. In this way, he or she can learn about what is happening on campus and to see how federal dollars are being spent. Be prepared to talk about why your research is useful - you should have some idea why the federal government is funding you - and to speak to the general usefulness of federally funded scientific research (not just your research). Another thing to do is arrange a meeting with your congressperson, either in the district office or on your next trip to Washington, timed around a congressional issue such as DOE or NSF funding for the next fiscal year. Similarly, your goal would be to talk about the importance of the federal investment in R&D in order for the US to remain competitive in the global economy and to educate the next generation of innovators. You may end up meeting with a staff person, but that is OK. Staff are powerful; they control the message and filter information, and if you ally yourself with a key staffer you will have made great progress toward influencing Congress. A third approach is to become involved in your congressperson's reelection. If it is tasteful for you to do so, make a contribution of your time and/or your money to the effort. This is a good way to get on the inside of your congressperson's operation and it helps establish your bona fides as a trustworthy supporter.
The objective in engaging your representatives should be to establish their confidence in your ability to provide reliable advice on science-related issues. Public policy increasingly has technical content, yet Members of Congress and their staffs generally are not technically trained. Thus, they will accept your help readily if you provide information and advice in a consumable form. Recognize that policy is not rational by scientific standards and that in politics there are legitimate competing interests. Try to present all sides of an issue, give options, and be willing to accept compromise. Be humble; you may be the expert scientist but that staffer is the expert policy maker who controls the flow of information you are trying to transmit. Most important, do not forget that your member of Congress serves you. Do not be shy about expressing your opinion by giving positive feedback or conveying your disappointment.
An alternative approach to becoming a citizen scientist is to stay abreast of issues and respond when response is warranted. An example of this occurred during the recent congressional budget impasse. One outcome of this deadlock was that many federal agencies, NSF included, were being funded on short-term bases by a series of continuing resolutions that threatened the agencies with significant loss of funds. Exacerbating the funding uncertainties were government shutdowns, during which no work was done (under threat of penalty, even for reading e-mail). At NSF, grant applications went unprocessed, creating a backlog and subsequent delay of funds. In response , APS leadership sent e-mail to several thousand APS members alerting them of the crisis and urging them to contact their Members of Congress in support of a full NSF appropriation. As a result of this appeal, at least 1,200 physicists sent letters to Congress. In addition, other professional organizations joined in, getting many of their members to follow suit. House Appropriations Committee Chair Bob Livingston reported having a stack of letters an inch-and-a-half thick in support of NSF. Scientists had shoved NSF into the face of Congress, and full funding for 1996 was restored. The lesson here is that physicists acting together on issues of broad importance can wield political power with positive effect for our profession and for the nation.
As citizens, scientists must actively promote the value of science. In Congress, this value is reflected in the appropriation of funds to the agencies. Yet once an agency has its share of the pie, further priority setting must be done at a more detailed and technical level. These spending priorities are set by Congress and the administration, with or without the involvement of the science community. One of the most dramatic recent examples of the dynamics of priority-setting occurred in the death of the Superconducting Super Collider and the subsequent repositioning of US high energy physics.
The high energy physics community had put forth the SSC as their top-priority project and for a time they were accommodated generously; however, Congress gradually became convinced that this gamble on discovery could no longer be justified. When SSC was finally terminated, the high energy physics community responded quickly. The Secretary of Energy convened a subpanel of the DOE High Energy Physics Advisory Panel to draft a consensus document (the Drell Report) outlining a vision for the future of high energy physics. The Drell Report appeared within half a year and was converted into an authorization bill by the House Science Committee. The bill was passed by the House, but time constraints prevented the Senate from taking it up. Despite its failure to be codified, President Clinton's 1996 and 1997 high energy physics budget requests have reflected the subpanel's recommendations and Congress has cooperated, ensuring the fiscal health of the field through the end of the decade.
The Drell report presented a balanced plan at reasonable cost. It also demonstrated that within a scientific community, consensus building is effective because it demonstrates an ability to make difficult choices and present a unified vision. Congress and the executive branch desperately need this sort of rational advice from relevant interest groups.
The Bahcall Report on astronomy and astrophysics is another good example of consensus building and priority-setting. This 1991 report synthesized the advice of over 300 astronomers and proposed a "prioritized list of new equipment initiatives" based on scientific potential coupled with economic, technological, and sociopolitical factors. Granted, consensus building is rarely simple, but it is a challenge that cannot be ignored. In this tight budgetary climate, Congress necessarily will continue to make the tough decisions. It is thus incumbent upon physicists to work within their professional communities to set priorities for their profession and convey this information to decision makers. Approaching priority setting rationally in a manner reminiscent of Drell and Bahcall is a way to have your professional voice heard and to guide policy makers in making the best possible decisions. Not doing so is very risky professionally in today's fiscal and political climate.
As in research or teaching, being an effective citizen scientist requires education and practice. Preparation is key. There are many resources available through professional societies that provide advice on how to convey your message most effectively. The American Institute of Physics publishes a free electronic newsletter called FYI, which provides weekly updates on science policy in Washington, DC. To subscribe, send mail to: listserv@aip.org. In the text field type, "add fyi". FYI can also be found on the AIP homepage at <http://aip.org>. Science magazine provides a weekly summary of science policy, both domestic and international, as well as readable summaries of important discoveries across the disciplines. AIP also publishes a useful free brochure called Communicating With Congress. A more comprehensive treatment of the subtleties of Congress and how to communicate in this environment is Working With Congress by William Wells (AAAS Press, 1996). The APS letter-writing campaign in support of NSF was organized by the APS Office of Public Affairs, PGNet program. If you want to be alerted in crisis situations so that you can make phone calls and/or write letters, contact opa@aps.org. APS also coordinates a successful Congressional Visits Program.
With practice, your input and advice will make a difference and you will benefit science, our profession, and the society we serve. Furthermore, taking positive action in times of uncertainty can be psychologically beneficial and personally empowering. In many ways, the old models describing science and society are no longer valid. Alternatively, a community of citizen scientists stands an excellent chance of entering the next era strengthened by a new compact with society.